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Abstract
A cellular automaton model of traffic flow taking into account velocity
anticipation is introduced. The strength of anticipation can be varied to
describe different driving schemes. We find a new phase separation into a
free-flow regime and a so-called v-platoon in an intermediate density regime.
In a v-platoon all cars move with velocity v and have vanishing headway. The
velocity v of a platoon only depends on the strength of anticipation. At high
densities, a congested state characterized by the coexistence of a 0-platoon with
several v-platoons is reached. The results are not only relevant for automated
highway systems, but also help to elucidate the effects of anticipation that
play an essential role in realistic traffic models. From a physics point of view
the model is interesting because it exhibits phase separation with a condensed
phase in which particles move coherently with finite velocity coexisting with
either a non-condensed (free-flow) phase or another condensed phase that is
non-moving.

PACS numbers: 45.70.Vn, 02.50.Ey, 05.40.−a

1. Introduction

In the last few years, the continuous increase of traffic demand has prompted authorities
around the world to place more emphasis on improving the efficiency and capacity of the
roadway systems. Ecological considerations, space and budgetary constraints have limited
solving traffic congestion by upgrading and constructing new roadway systems. Advanced
technologies for vehicular traffic have been developed as a means to improve the management
of the existing system and thus to solve traffic congestion, environmental issues and improve
traffic safety. However, to achieve these aims, an accurate forecast of the impact of these
technologies is critical before their final deployment.

0305-4470/04/123769+13$30.00 © 2004 IOP Publishing Ltd Printed in the UK 3769
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Testing these advanced technologies on real traffic is not always feasible. In contrast,
computer simulations as a means of evaluating control and management strategies in traffic
systems have gained considerable importance because of the possibility of taking into account
the dynamical aspects of traffic (see, for example, [1–3]) and assessing the performance of a
given advanced technology in a short time.

Cellular automata (CA) models for traffic flow [4, 5] have shown the ability to capture
the basic phenomena in traffic flow [6]. Cellular automata are dynamic models in which
space, time and state variables are discrete. Discrete space consists of a regular grid of cells,
where each one can be in one of a finite number k of possible states. All cells are updated
in discrete time-steps. The new state of a cell is determined by the actual state of the cell
itself and its neighbour cells. This local interaction allows the capture micro-level dynamics
and propagates it to macro-level behaviour. The discrete nature of CA makes it possible
to simulate large realistic traffic networks using a microscopic model faster than real time
[5, 7, 8]. Nowadays, several theoretical studies and practical applications have improved the
understanding of empirical traffic phenomena (see, e.g., [6, 9–11]). Moreover, CA models
have proved to be a realistic description of vehicular traffic in dense networks [7, 8].

In this paper, we propose a single-lane probabilistic model based on the first CA model
of Nagel and Schreckenberg (NaSch model) [4] to describe the effects of several anticipation
schemes in traffic flow. Here anticipation means that drivers estimate their leader’s velocities
for future time-steps [12–18]. This can lead to an increase of the vehicular capacity and a
decrease of the speed variance. However, incorporating different driving strategies requires a
safety distance with respect to the preceding vehicles. For this purpose we introduce a new
parameter in the deceleration process, called the anticipatory driving parameter, to estimate
the velocity of the preceding vehicle. This estimation, plus the real spatial distance to the
leading vehicle, establishes a safe distance among vehicles. By appropriately tuning this new
parameter different traffic situations of non-automated, automated and mixed traffic can be
considered. Furthermore, the anticipatory driving parameter is relevant for automated highway
systems (AHS) [19, 20].

According to simulation results from our proposed model, the parameters can be adjusted
to reproduce empirical fundamental diagrams (flow versus density curves) of real non-
automated traffic. In addition, simulation results in the case of high anticipation (like
automation) describe one of the interesting phenomena in traffic flow, formation of platoons.
We will show that, in contrast to models without anticipation, dense platoons can be formed
where all cars move coherently with some finite velocity v > 0. The mechanism for platoon
formation is not only of great importance for AHS to increase highway capacity in a much safer
way [21], but also helps to understand the essential role of anticipation effects in realistic traffic
models. By varying the anticipatory driving parameter three different regimes, characterized
by different slopes of the fundamental diagrams, can be observed. Apart from a free-flow and
a congested phase, an additional regime where platoons of cars move with the same velocity
v < vmax − 1 exists.

The paper is organized as follows. In section 2 we define a modified NaSch model
to consider different driving strategies. It contains a new parameter to establish a velocity-
dependent safe distance. In section 3, we present the results of our investigations. We show
results for the fundamental diagram and different values of the anticipation parameter. Phase
separation into a free-flow regime and so-called v-platoon is observed in a certain intermediate
density regime. For large densities, in the congested state phase separation into a dense jam
(0-platoon) and v-platoons is observed. This is also interesting in relation to recent general
studies about phase separation in one-dimensional nonequilibrium systems [22, 23]. The
flow structure determined by the existence of dense platoons with velocity v is calculated.
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Analytical results are in excellent agreement with results from computer simulations. In the
concluding section 4 we summarize our results and discuss the relevance of our results for
traffic models, real traffic and the physics of phase separation in driven diffusive systems.

2. Definition of the model

The proposed model is defined on a one-dimensional lattice of L cells with periodic boundary
conditions, which corresponds to a ring topology with the number of vehicles preserved. Each
cell is either empty, or it is occupied by just one vehicle travelling with a discrete velocity v

at a given instant of time. All vehicles have a velocity v ∈ {0, . . . , vmax}. For simplicity only
one type of vehicle is considered here. The time-step (�t) is taken to be 1 s.

Let vi and xi denote the current velocity and position, respectively, of vehicle i, and vp

and xp be the velocity and position, respectively, of the vehicle ahead (preceding vehicle) at a
fixed time; di := xp − xi − 1 denotes the distance (or headway, i.e. number of empty cells) in
front of the vehicle in position xi .

The dynamics of the model is defined by the following set of rules, that are applied to all
N vehicles on the lattice in each time-step:

R1: Acceleration. If vi < vmax, the velocity of the car i is increased by 1, i.e.,

vi → min(vi + 1, vmax).

R2: Randomization. If vi > 0, the velocity of the car i is decreased randomly by one unit with
probability R, i.e.,

vi → max(vi − 1, 0) with probability R.

R3: Deceleration. If ds
i < vi , where (with a parameter 0 � α � 1)

ds
i = di +

[
(1 − α) · vp + 1

2

]

the velocity of the car i is reduced to ds
i . [x] denotes the integer part of x, i.e.

[
x+ 1

2

]
corresponds

to rounding x to the next integer value. The new velocity of the vehicle i is therefore

vi → min
(
vi, d

s
i

)
.

R4: Vehicle movement. Each car is moving forward according to its new velocity determined
in steps 1–3:

xi → xi + vi.

Thus state updating is divided into two stages, first velocity (rules R1, R2 and R3), second
position (rule R4). Note that this division follows the scheme in differential equation
integration that first updates the time derivative and then the value of the state. It is
important to mention that we are changing the order of the rules in comparison with the
NaSch model since R2 is applied before R3. The reason for this change is that with R2
being applied after R3, as in the original NaSch model, cars are unable to adjust to the
randomization-reduced velocities of the traffic in front. Therefore the model would no longer
be automatically collision free, as is the NaSch model and most other CA traffic models. Our
choice reflects our wish to model the behaviour of anticipatory drivers rather than reactive
drivers.

Rule R1 indicates that all the drivers would like to reach the maximum velocity when
possible. Rule R2 takes into account the different behavioural patterns of the individual drivers
in which with no apparent reason a driver decreases its speed. These situations include, for
example, cases of overreaction in braking or incidents along the highway that distract drivers,
and random fluctuations.
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Rule R3 is the main modification to the original NaSch model [4]. In this rule the distances
between the ith and (i + 1)th vehicles, and their corresponding velocities are considered.
Knowledge of the preceding vehicle’s velocity is incorporated through the anticipatory driving
parameter α with range 0 � α � 1. Note that, by only varying the parameter α in the term
ds

i = di + [(1 − α)vp + 1/2], different driving strategies can be modelled. If α takes its
maximum value (α = 1), the speed of the vehicle ahead is not considered in the deceleration
process (no anticipation). In contrast, when α = 0 the speed of the vehicle ahead is considered
without restrictions [20]. This last case is equivalent to taking into account the distance between
two cars and the exact velocity of the vehicle ahead, i.e., to allow that a vehicle may be behind
the other one with the same speed without the existence of an additional safe distance between
them (only the distance included in the cell size). The case α = 0 occurs with either a
very aggressive driver or when vehicles can obtain information about the velocity of vehicles
ahead3 to allow small distances between vehicles (e.g. of the order 1 m). Intermediate values
for α thus represent different safe spacing policies or strengths of anticipation in the vehicles.
Platooning schemes [21] imply values of α closer to zero and demand additional requirements
to preserve safety, such as coordinated braking [19]. Independent vehicle driving with low
strengths of anticipation implies values of α closer to 1 in order to preserve safety levels.
Therefore, the value of the parameter α will be established according to the desired policy of
the safe distance among vehicles.

There is a price to pay with this modification that limits deceleration values. It could be
that deceleration of a vehicle also implies decelerations of the following vehicles. Step R3
which assures that collisions are avoided, is then applied sequentially to take into account the
limited deceleration capability. The final configuration is independent of the starting point
of this sequential updating. In order to determine vi consistently for all cars, R3 should be
iterated at most vmax times in systems with periodic boundary conditions. For example, the
most critical scenario is a chain of vehicles, each one of them travelling at maximum speed,
with the first vehicle running into a stopped vehicle. In order to set all velocities of vehicles in
the chain consistently within the maximally allowable deceleration, R3 has to be iterated vmax

times, assuming that the velocity decreases by one from one vehicle to another in the chain.
In real situations, the drivers always estimate the velocity of the preceding vehicle and

according to this and their driving style (relaxed or aggressive) they choose a safe headway
distance. Variation of α also allows us to model these aspects. Thus, the proposed model is
able to represent different anticipatory driving strategies, and model the safe distance required
with only one parameter α.

We emphasize that the CA model as presented here is a minimal model in the sense that
all four steps R1–R4 are necessary to reproduce the basic features of real traffic, however,
additional rules may be needed to capture more complex situations [13].

3. Simulation results

To simulate the CA model proposed in the previous section, the typical length of a cell is
around 7.5 m. It is interpreted as the length of a vehicle plus the distance between cars in a
dense jam, but it can be suitably adjusted according to the problem under consideration. With
this value of the cell size and a time-step of 1 s, v = 1 corresponds to moving from one cell to
the downstream neighbour cell in one time-step, and translates to 27 km h−1 in real units. The
maximum velocity is set to vmax = 5, equivalent to 135 km h−1. The total number of cells is
assumed to be L = 104, and the density ρ is defined as ρ = N/L, where N is the number of

3 This will happen in automated highway systems or vehicles equipped with appropriate sensors [24].
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Figure 1. Left: fundamental diagram for different values of the anticipation parameter α. The
legend indicates the effect of rounding in the estimation of the velocity of the preceding car, defined
in rule R3. Right: relationship between mean velocity and density for R = 0.2 and different values
of α.

cars on the highway. Initially, N vehicles are distributed randomly on the lane around the loop
with an initial speed taking a discrete random value between 0 and vmax. Since the system is
closed, the density remains constant with time.

All the simulation data presented in this work have been generated by simulations of
L = 104 and T = 15L time-steps. In order to analyse the results, the first 10L time-steps
of the simulation are discarded to let transients die out and the system reach its steady state.
Then the simulation data are averaged over the final 5L time-steps.

Velocities are updated according to the velocity updating rules R1–R2–R3 and then all
cars are moved forward in step R4. For each simulation a value for the parameter α is
established by taking into account the desired strength of anticipation and thus, controlling
the safe distance among vehicles. In the following, the value of α is the same for all vehicles
(homogeneous drivers).

The fundamental diagram characterizes the dependence of the vehicle flow on density and
is one of the most important criteria to show that the model reproduces traffic flow behaviour.
Comparing with empirical data we find a good agreement by choosing the model parameters
R = 0.2 and α = 0.75. This α value corresponds to cautious estimation of the preceding car’s
velocity.

Variation of α makes it possible to consider several anticipation strategies, e.g. non-
automated, mixed and automated traffic flow, and so go beyond previous analyses.

3.1. Modelling different anticipation schemes

Determination of the impact of different driving strategies is important in order to propose
automated traffic alternatives. Following that proposal, we decided to investigate the traffic
flow behaviour using our model. As mentioned above, the parameter α represents the way in
which different driving strategies adopt a safe spacing policy or strength of anticipation in the
vehicles. By varying the parameter α, these strategies can be tuned. In figure 1 we show the
fundamental diagram of the proposed model with a fixed value of R = 0.2 and different values
of α. Each curve includes multiple values of α as a consequence of the rounding defined in
rule R3 to estimate the preceding car’s velocity. For example, if we look at the range of α

from 0 to 0.12, we always get the same value in the term
[
(1 − α) · vp + 1

2

] = [
vp + 1

2

]
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Figure 2. Space–time diagram for R = 0.2, ρ = 0.5 showing the time evolution of a system
simulated initially with α = 0.51. After switching to α = 0.5, the behaviour changes dramatically.

(rule R3) for all values of vp. So, for all data presented in the remaining part of this section
we have chosen representative values for α: α = (0.12, 0.13, 0.2, 0.5, 0.9).

From figure 1 the impact of the driving strategies coded in α can be observed. Smaller
values of α, i.e. higher anticipation levels, imply larger flows. Here vehicles maintain a less
safe distance, leading to an increase in vehicular capacity. This behaviour is in agreement
with, for example, platooning strategies that exploit knowledge of the velocity of preceding
vehicles and require smaller headways (near 1 m), to increase the flow.

It is important to note that for values of α from 0.13 to 0.50 a second positive slope
corresponding to a mixed branch is observed in the fundamental diagram. It is interesting that
the initial positive slope, corresponding to a free-flow region where there are no slow vehicles,
is similar for all values of α. Here the vehicles travel at near maximum speed. For the second
branch, on the other hand, the flow is increased with non-maximum velocity, indicating a
mixed region due to anticipation effects (figure 1 (right)). In order to analyse the role of the
anticipation, we show the average velocity as a function of density for the same parameter
values as in figure 1 (left).

As we can see from figure 1, higher levels of anticipation (smaller values of α) imply a
larger density interval for the free-flow region. For values 0.13 < α < 0.50, after the free-flow
region, traffic flow organizes in a so-called mixed region with a lower mean velocity. In this
mixed region, in addition to free-flowing vehicles, vehicles moving in platoons where all cars
have the same velocity and vanishing headway exist. The existence of this mixed region
indicates that a suitable estimation of the velocity of preceding vehicles, coded in α, allows
the flow to increase even for large densities.

Figure 2 shows a spacetime diagram4 that exemplifies the dramatic changes in the
microscopic structure when changing the value of α. Each horizontal row of dots represents
the instantaneous positions of the vehicles moving towards the right, while successive rows
of dots represent the position of the same vehicles at successive time-steps. The simulation
is started with α = 0.51 where the jamming regions travel backwards. However, after some

4 For a Java applet of the simulations, see http://www.cie.unam.mx/xml/tc/ft/arp/simulation.html.
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Figure 3. Standard deviation of the speed.

time we switch to α = 0.5 and immediately observe a dramatic change in the slope of the
congested regions. They are now travelling forward. This behaviour has been observed before
in anticipatory modelling [18]. Such structured flow observed in spacetime diagrams increases
the highway capacity due to the space reduction among vehicles. In these simulations we have
found that the branches of congested or jammed flow collapse to a single region as in the VDR
model [31]. These results are analogous to those for slow-to-start models, because effectively
the outflow from a jam is reduced compared to the maximal flow.

On the other hand, it is also important to analyse the effects of different driving strategies
on traffic safety. This can be done by an analysis of the standard deviation of vehicles’ speed.
A large standard deviation of speed means that, on average, a vehicle experiences frequent
speed changes. In turn, the high speed variance could also increase the probability of traffic
accidents. Integration of different driving strategies and traffic safety should be considered
in order to facilitate more efficient road use, i.e. traffic with higher flow and minimal speed
variance. From the thermodynamic point of view, the efficiency of a system is related to the
entropy [27]. In particular in non-equilibrium situations, the entropy production is used to
determine efficient conditions. In our case, a smaller standard deviation of speed indicates that
the system is less disordered (in the velocity sense) since a system with less entropy production
is more efficient than one with higher entropy production [28, 29]. In this way, the analysis of
the standard deviation allows us to draw conclusions about safety and order in the system.

Figure 3 shows the standard deviation of speed resulting from our model for different
strengths of anticipation. For each value of α a maximum that occurs shortly after the free-
flow region can be clearly seen. In the free-flow region, the speed variance is negligible since
there are no slow vehicles and fluctuations are extremely rare. Here we will use efficiency
as an indicator of the higher flux in correspondence with order and safety conditions, i.e.,
high flux and small speed variance. Since the free-flow region increases as α decreases,
it seems reasonable to attempt traffic with the higher level of anticipation in the range of
density from 0 to 0.49. This choice not only produces a state with higher flow, but also the
lowest standard deviation, so attaining more efficient traffic. Beyond this efficient density,
the strength of anticipation coded in α should be changed based on the values of the standard
deviation: for ρ ∈ [0.5, 0.54), a more efficient performance is found with α = 0.13; however,
for ρ ∈ [0.54, 0.63) more efficient behaviour is attained with α = 0.20. Summarizing, the
behaviour observed in figure 3 helps us to understand the necessity of a suitable use of different
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Figure 4. Velocity distributions for density ρ = 0.4 and different values of α. The v-values
indicate the v-platoons found.

driving strategies to improve the efficiency of road use. In order to attain a compromise between
traffic safety and capacity, the strength of anticipation should be determined depending on
density: higher densities require a larger safety distance among cars, i.e. values of α closer
to 1, in order to preserve safety levels.

In addition to homogeneous systems we have also investigated inhomogeneous ones where
a random value of α ∈ [0, 1] is assigned to each vehicle [30]. This value is not changed during
the time evolution to simulate a distribution of aggressive, non-aggressive and relaxed drivers.
In this case we find that the region where the standard deviation is negligible is close to that
resulting from homogeneous drivers with α = 0.2 (high degree of anticipation). However, the
variance of vehicle speeds is much larger than that corresponding to homogeneous drivers. In
the fundamental diagram of the inhomogeneous system the mixed region is missing. Instead
the variance in the level of anticipation produces higher fluctuations of speeds, and the flow
decreases rapidly. Therefore some anticipation driving schemes have a strong impact on the
behaviour of the system.

3.2. Structure of the mixed states

The behaviour in the mixed states is determined by the existence of dense platoons in which
vehicles move coherently with the same velocity v. In the following these will be called
v-platoons. The stationary state then shows phase separation into a free-flow region and a
v-platoon. This is similar to the behaviour observed in models with slow-to-start rules where
the system separates into free flow and a dense jam, i.e. a 0-platoon [31]. In our case, the
behaviour of mixed states also exhibits phase separation into free flow and a condensed phase
in which particles move coherently with finite velocity. To our knowledge, such behaviour has
not been observed in other models before. It is also of great theoretical interest since recently
general conditions for the occurrence of phase separation in driven diffusive systems have been
suggested. The mixed state might be regarded as an idealization of homogeneous-in-speed
states discussed in the context of synchronized traffic (see [32] and references therein).

Figure 4 shows the velocity distributions of the different branches. It can be clearly
seen that only cars with velocity v and free-flowing cars (with velocity vmax or vmax − 1 due
to the randomization) exist. Due to the complexity of the model, an exact solution of the
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corresponding master equation cannot be derived. Such solutions so far have been found
only in very special cases, i.e. models with vmax = 1 [5, 6]. In the following, we present
a phenomenological analysis based on the microscopic structure of mixed states leading
to analytical expressions which describe with great accuracy the phase separation in the
fundamental diagram. We start analysing the stability of such phases.

Since the headway di of a car i inside a v-platoon is di = 0, its new velocity is determined
by v′

i = min
(
vi, d

s
i

)
with ds

i = [
(1 − α) · vp + 1

2

]
. For a stable v-platoon, v′

i must be equal
to v. This gives the following stability condition:

v � (1 − α) · v + 1
2 . (1)

Equation (1) can be regarded as a condition for the anticipation parameter α. It implies that a
v-platoon can only be stable for

αv+1 < α � αv (2)

where αv is defined by αv := 1/2v. However, this condition is only necessary, not sufficient.
The v-platoons that can be realized for a given α also depend on the randomization R. For
example, for R = 0.2, platoons with v = 0, 1, 2, 3 occur, whereas for R = 0.4 platoons with
v = 3 cannot be observed in the infinite system although they might exist in small systems.
Simulations indicate that the slope of the mixed branch in the fundamental diagram has to be
smaller than (1 − R)(vf − 1) where vf is the average velocity in free flow: vf = vmax − R.
This will be discussed in section 3.4 in more detail.

Another criterion for the stability of platoons can be derived from the condition that the
inflow and outflow of the platoon have to be identical in the steady state. In the following
we will derive estimates for these flows and in this way obtain analytical expressions for the
fundamental diagram in the mixed region.

The outflow from a v-platoon is determined by the average time Tw needed by the leading
vehicle of the platoon to accelerate to velocity v + 1. Assuming that this car has a large
headway, Tw is determined by the randomization constant R through Tw = 1

1−R
. Therefore,

in the free-flow region of the system, the average headway �xf is �xf = Tw(vf − v) + 1.
This consideration is very similar to the reasoning used in [31].

Assuming that the platoon consists of Nv and the free-flow region of Nf vehicles, we
have

N = Nv + Nf and L = Nv + Nf �xf . (3)

Furthermore, it has been assumed that the transition region between the platoon, where all
cars have headway di = 0, and the free-flow region, where the average headway is given by
�xf , can be neglected. Eliminating Nf we find

Nv

L
= ρ�xf − 1

�xf − 1
. (4)

We now can calculate the flow J = ρv̄ of the corresponding phase-separated state. The
average velocity v̄ in the presence of a v-platoon is given by

v̄ = Nvv + Nf vf

N
. (5)

A straightforward calculation using the results given above yields for the flow in the mixed
state

Jv = (1 − R) + (v − (1 − R))ρ. (6)

These results are in excellent agreement with the results from computer simulations (see
figure 5). Since 1 − R < 1, all slopes corresponding to mixed states in the fundamental



3778 M E Lárraga et al
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Figure 5. Comparison of the simulation results (symbols) with the analytical predictions (6) and
(9) (solid lines).

diagram are positive, except those for 0-platoons which are responsible for the jammed
branch with low flow and negative slope.

3.3. Structure of the congested states

One of the most interesting findings observed in the fundamental diagram is that all the different
driving strategies attain the same congested curve, i.e., for large densities all curves collapse
on one congested branch where the flow decreases with increasing density. In the following
we explain this by analysing the structure of the congested states. Simulations indicate that
the structure of the corresponding states depends on the parameter regime. In the range (2),
where a v-platoon can exist, the congested branch is characterized by the coexistence of a
compact jam (0-platoon) and various v-platoons. The v-platoons are formed when a bunch of
vehicles escapes from the jam. As argued in section 3.2, the first car escapes after an average
waiting time Tw = 1

1−R
. Due to anticipation, with probability 1 − R the second car can move

in the same time-step, and so on. The average number of cars escaping in the same time-step
is then given by

l̄ =
∑∞

l=1 l(1 − R)l
∑∞

l=1(1 − R)l
= 1

R
. (7)

These cars form a v-platoon of length l̄ where the value of v depends on the parameter region
as discussed above. Since the average waiting time for the escape of a car is Tw, the average
distance between two v-platoons is �xc = vTw = v

1−R
.

To calculate the flow in the congested branch, we again neglect the transition regions and
assume that only one jam with N0 vehicles and n v-platoons with a total number of Nv cars
are present. Then we have N0 + Nv = N with Nv = nl̄. Furthermore N0 + Nv + n�xc = L,
where N0 and Nv are the total lengths of the platoons and n�xc is the total space between the
platoons. These relations yield

1 = 1

L
(N + n�xc) = ρ +

Nv

L
· �xc

l̄
. (8)
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The average velocity of the vehicles in the congested branch is v̄ = Nvv
N

. Using (8), this
implies for the flow

Jcong = ρv̄ = N

L

Nv

N
v = (1 − ρ)

l̄

�xc

v

= 1 − R

R
(1 − ρ). (9)

Note that this result is independent of the velocity v of the platoons! It is in excellent
agreement with the simulation data (see figure 5), justifying, e.g., the assumption made about
the transition regions.

3.4. Stability regions

For fixed α we now can estimate the stability region ρ1 � ρ � ρ2 for the mixed states. At the
lower boundary density ρ1 the number of cars Nv in the v-platoon vanishes. From (4) one has
ρ1�xf − 1 = 0 which yields

ρ1 = 1 − R

vf − v + (1 − R)
. (10)

The upper bound ρ2 is not determined by the condition Nv = N , i.e. all cars belong to the
v-platoon. This would correspond to the density ρ = 1. In fact, the instability of the mixed
state occurs earlier. At the density

ρ2 = (1 − R)2

R(v + R − 2) + 1
(11)

the flow (6) of the mixed branch becomes larger than that of the congested branch (9) and
therefore (at least for random initial conditions) the flow of the congested branch is observed.
However, our simulations have given indications for hysteresis effects and metastability in the
large density regime. We will discuss these in more detail in a future publication [30]. For
v = 0 the upper transition density becomes ρ2 = 1, independent of R, consistent with the
observation (figure 1) that the mixed region for v = 0 extends up to the maximal density.

Since ρ2 has to be larger than ρ1, this yields an additional condition for the stability of
the branches. It is easy to check that ρ1 < ρ2 if

(1 − R)vf > v. (12)

This is just the condition obtained in section 3.2 from computer simulations.
Summarizing, a mixed region with v-platoons can only exist for 1/(2(v + 1)) < α �

1/(2v) and R satisfying (12). If these conditions are fulfilled, v-platoons occur in the density
interval ρ1 � ρ � ρ2 where ρ1 and ρ2 are given by (10) and (11), respectively.

4. Summary and conclusions

Forecasting the impact of different anticipation schemes plays an essential role in real
traffic flow in order to propose automated traffic alternatives. In this paper, we have
introduced and investigated a modification of the NaSch model to better capture reactions
of the drivers intended to maintain safety on the highway. The addition of an anticipation
parameter α ∈ [0, 1] proves to be useful to describe different traffic situations of non-
automated, automated and mixed traffic. Simulation results for driving schemes associated
with intermediate levels of anticipation with α from 0.13 to 0.5, exhibit phase separation
in a certain density regime [ρ1, ρ2] (see (10), (11)) into a free-flow region and so-called



3780 M E Lárraga et al

v-platoons. In these dense platoons vehicles move with the same velocity v and have a
vanishing headway. The velocity v of the platoon is determined by the strength of anticipation
and randomization through equations (2) and (12). These states are similar to the empirical
observed homogeneous-in-speed states.

This platoon formation observed in a mixed regime plays an important role in automated
highway systems in increasing the vehicular capacity. Therefore, the results obtained help to
elucidate the effects of anticipation coded in α. Smaller values of α (greater estimation of
the preceding car velocity) imply larger flows and a larger density interval for the free-flow
regime. This is in accordance with, for example, the use of certain anticipation strategies to
exploit knowledge of the velocity of the preceding vehicle and so reducing the distance among
vehicles, increasing the capacity and the density interval for free-flow regime.

Moreover, the analysis of the speed variance of individual vehicles indicates the
importance of establishing a suitable velocity anticipation scheme according to the density
regime. The strength of anticipation should be determined based on the density in order
to provide more efficient road use and so improving traffic safety. The highest strength of
anticipation should be considered before the corresponding maximum density for the free-flow
regime is reached. This choice not only produces traffic with maximum flow, but also with
minimum speed variance. Higher densities require larger safe distances in order to preserve
safety levels. Integration between capacity and safety resulting from the analysis of speed
variance can help to improve the behaviour of traffic flow.

The considerations in this paper show the flexibility of the CA approach to more complex
traffic flow problems. A simple and natural modification of the rules of the NaSch model to
consider different driving schemes allows us to describe the formation of coherently moving
platoons observed in some anticipation schemes. We think that the results presented here are
relevant to establish suitable levels of safety and anticipation not only for AHS, but also in
real traffic. We stress that although in this paper the model is simulated in a single lane on a
ring, it is possible to apply it to complex highway topologies in a satisfactory way [30].

Apart from its practical relevance for traffic problems, our work also shows interesting
physical aspects. The model suggested here exhibits various kinds of phase separation
phenomena. At intermediate densities, phase separation into a condensed (v-platoon) and
a non-condensed (free-flow) phase can be observed. In contrast to most other models of
driven diffusion, the condensed phase moves coherently for v > 0. At high densities an even
more surprising state is found that exhibits phase separation between different condensates, a
non-moving one (v = 0) and several coherently moving platoons (v > 0). To our knowledge
such behaviour has not been observed before. It would be interesting to study these phases in
more detail, especially since recently some progress in the understanding of phase separation
in driven diffusive models has been made [22, 23]. Work in this direction is currently in
progress [30].
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